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Abstract
The variation in magnetic properties with particle size for nanomagnetic
particles at 300 K and 10 K has been explained with the help of nonequilibrium
statistical mechanics. At room temperature a maximum in the coercivity curve
is observed at a critical diameter, dc, so that two different regimes can be
distinguished. This clearly indicates two different mechanisms of magnetization
reversal as a function of particle size. Using Kramer’s treatment, the increase
in coercivity with an increase in particle size at room temperature in the single-
domain region has been clarified. Beyond a certain critical particle size, a multi-
domain region is formed. Now we invoke supersymmetric quantum mechanics
(SUSY QM) for these multi-domain region to explain the decrease in coercivity
with an increase in particle size. The decrease in coercivity with an increase
in particle size at very low temperature (10 K) is also explained with the help
of our two-state model by invoking the concept of effective anisotropy. The
variation in the saturation magnetization Ms and the remanence-to-saturation
magnetization ratio, Mr

Ms
, with particle size are discussed in detail. The above

results underscore the fact that at room temperature thermal effects dominate,
whereas at low temperature (10 K) surface effects govern the magnetization
reversal process. In this paper the effect of the magneto-crystalline anisotropic
potential on the magnetization of non-interacting uniaxaial nanomagnetic
particles is discussed in detail.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Since the pioneering work of Neel five decades ago [1], the magnetic properties of nanoparticles
have attracted much interest due to their significance in both technological applications and
fundamental research [2–6]. These systems can be considered as very good model systems for
rotational Brownian motion and thermally activated multistable systems [7, 8], and stochastic
resonance [9].

The coercivity of nanomagnetic systems is an important quantity that plays a crucial role
as far as the stabilization of a magnetic system is concerned [10, 11]. Modern magnetic
recording technologies involve particles that are near the superparamagnetic limit. In this limit,
the energy barrier separating the two energetically degenerate magnetic orientations is small
enough so that thermal fluctuations naturally lead to spontaneous switching of the orientation.
The random magnetization reversals in particles below the superparamagnetic limit degrade
recorded information. Thus the main challenge is to keep the energy barrier in the individual
particles high enough to make spontaneous switching infrequent, and the material is kept
magnetically soft enough to facilitate recording. Thus materials with higher coercivities due to
strong magneto-crystalline anisotropies are employed in recording media. Thus it is essential to
extend the physical understanding of the size-dependent behaviour of magnetic fine particles.

The behaviour of the coercivity as a function of particle size is a well-studied and old
behaviour [12]. Various theoretical models have been published on the particle size dependence
of coercivity [13, 14]. Thermal switching in single-domain particles was considered by many
people [15–19]. The effect of a constant magnetic field in Neel relaxation in the single-domain
regime was discussed by Coffey et al [20, 21]. The nucleation of domain walls was investigated
by Braun [22, 23]. The crossover from single- to multi-domain switching was investigated
numerically by Hinzke et al [24]. But these models failed to explain the decrease in Hc with an
increase in particle size. Also, the effect of measurement time, which is the time lag between the
measurement and application of the field, was not included in the above-mentioned theoretical
models.

In this paper we have explained the non-monotonic behaviour, i.e. first the increase
and then the decrease in coercivity with an increase in particle size at room temperature
(cf. figure 1), with the help of nonequilibrium statistical mechanics. Also we have elucidated
the monotonous decrease in coercivity with an increase in particle size at very low temperature
(10 K, see figure 1), within the framework of our two-state model. We have added to the model
the influence of anisotropy and have used supersymmetry quantum mechanics (SUSY QM),
which has never before been applied to a problem in magnetism. Thus, our model puts the
phenomena on a more mathematical basis, as well as a quantitative explanation including the
effect of measurement time and anisotropic potential. We have assumed that our system is
noninteracting and mono-dispersed. The particle size distribution and inter-particle interaction
can produce many interesting effects [5, 25, 26], but it is beyond the scope of this paper.

With the preceding background, the paper is organized as follows. In section 2, we have
discussed the increasing part of the coercive force at room temperature, assuming that the
material consists of single-domain particles with a high barrier and a weak noise limit. Also we
have discussed the decrease in the coercive force at low temperature (10 K) in this section. We
have justified our model by comparing our numerical results with that of experimental data. The
variation in other magnetic properties, in particular the values of the saturation magnetization
Ms and the ratio of remanence-to-saturation magnetization Mr

Ms
are also discussed in detail in

this section. The effect of magneto-crystalline anisotropy on the equilibrium magnetization is
illustrated is section 3. In section 4 we discuss the decreasing part of the coercivity by invoking
the SUSY method for the multi-domain nanoparticles. Finally, we summarize and conclude in
section 5.
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Figure 1. Dependence of coercive field on the particle size of Co80Ni20 at two different
temperatures (solid curves are just a guide to the eye). The inset shows the linear dependence
of the coercive field on the inverse of the average particle size [10].

2. Single-domain regime and size-dependent magnetic properties

A basic assumption in small-particle magnetism is that a single-domain particle with a given
physical orientation is in thermal equilibrium at a temperature T . Its constituent spins rotate in
unison, so the only relevant degree of freedom is the orientation of the net magnetic moment.
We consider systems where the magnetic-anisotropy energy has axial symmetry. Now in an
external field �B, the total magnetic energy is

V ( �m) = − Kv

m2
( �m · n̂)2 − �m · �B, (1)

where K is the magnetic-anisotropy energy constant, v is the volume of the nanoparticle, and
n̂ is a unit vector along the anisotropy axis. Introducing the unit vectors ê = �m

m and b̂ = �B
B ,

as well as the dimensionless anisotropy and field parameters σ = Kv
kBT and ξ = mB

kB T , we can
express the potential energy (1) as

−βV = σ(ê · n̂)2 + ξ(ê · b̂), (2)

where β = 1
kB T and kB is the Boltzmann constant.We usually choose the anisotropy axis n̂ as

the polar axis of a spherical coordinate system. Then, if (θ, φ) and (λ, 0) denote the angular
coordinates of �m and �B respectively, as shown in figure 2, the magnetic energy can be written
as

−βV (θ, φ) = σ cos2 θ + ξ‖ cos θ + ξ⊥ sin θ cosφ, (3)

where ξ‖ = ξ cos λ and ξ⊥ = ξ sinλ. The potential energy (3) is plotted in figure 3 for different
orientations of λ.

The first phenomenological equation of motion describing the average behaviour of the
magnetization vector �m was put forward by Landau and Lifshitz [27] and is given by

�̇m = γ �m × �Heff, (4)

where γ is the gyromagnetic ratio and �Heff is an effective magnetic field given by

�Heff = − 1

Ms

∂V (θ, φ)

∂ �m , (5)
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Figure 2. Coordinate system used for our calculation in section 2.
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Figure 3. Variation in the potential function with polar angle θ for different values of λ.

where Ms is the spontaneous magnetization. Gilbert [28] then proposed an effective damping
term, and the explicit form of Gilbert equation is

�̇m = b

a
Ms �m × �Heff + bMs( �m × �Heff)× �m, (6)

where b = γ a
(1+a2)Ms

, a = ηγMs and η is a phenomenological damping constant. Brown [15]
then derived the Fokker–Planck equation for the distribution of the magnetization vector on
the basis of Wang and Uhlenbeck [29]. Brown’s work is based on the assumption that the
individual magnetization vector in a system of single-domain magnetic particles can be treated
as a current of representative points moving around the surface of a unit sphere having a number
density W ( �m, t) and a current density �J ( �m, t). Since such representative points can be neither
created nor destroyed, then W and �J satisfy the continuity equation

Ẇ = − ∂ �J
∂ �m . (7)

The representative points that are concentrated around the minima are dispersed by the
influence of the random thermal agitation. This can be represented by the inclusion of a
diffusion term of the form −κ ∂W

∂ �m , where κ is a constant at a given temperature. Thus the
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current density �J is given by

�J = W �̇m − κ
∂W

∂ �m = −b

a
W �m × ∂V

∂ �m − bW
∂V

∂ �m − κ
∂W

∂ �m . (8)

Now, following Brown’s treatment [15], we obtain the following Fokker–Planck equation in
spherical polar coordinates:

Ẇ = β−1b∇2W + bW∇2V + b

(
∂V

∂θ

∂W

∂θ
+ 1

sin2 θ

∂V

∂φ

∂W

∂φ

)

+ b

a sin θ

(
∂V

∂θ

∂W

∂φ
− ∂V

∂φ

∂W

∂θ

)
. (9)

In the intermediate-to-high-damping (IHD) approximation of Brown, the potential V may be
approximated close to the i th stationary point by a Taylor series [30] truncated at the second-
order terms so that

V ( �m) = Vi + 1
2 C (i)

1 〈 �m · e(i)1 〉e2 + 1
2 C (i)

2 〈 �m · e(i)2 〉e2, (10)

where the coordinate systems {e(i)k }k=1,2,3 are oriented so that e(i)3 points in the direction of the
stationary point. The condition for a stationary point of the potential (3) is

sin θ cos θ + h cos λ sin θ − h sin λ cos θ cosφ = 0, (11)

where h = ξ

2σ . On introducing u = h cos λ, r = h sin λ and x = cos θ , we obtain

(x + u)
√

1 − x2 ± r x = 0, (12)

where the negative sign corresponds to the stationary points that occur for φ = 0, while the
positive sign represents the local maximum that occurs for φ = π . Thus we obtain

Vi = β−1σ

(
1 − x2

i − 2uxi − 2r
√

1 − x2
i

)
, (13)

C (i)
1 = 2β−1σ

(
x2

i + uxi + r
√

1 − x2
i

)
, (14)

C (i)
2 = 2β−1σ

(
−1 + 2x2

i + uxi + r
√

1 − x2
i

)
, (15)

where −1 � x2 � x0 � x ′
0 � x1 � 1 are the roots of the equation

(x + u)2(1 − x2) = r 2x2 (16)

which is obtained by squaring equation (12). Let us suppose that the ratios of the barrier height
to the thermal energy becomes appreciable, i.e. (β(V0 − Vi ) � 1), so that we may say that
the density of magnetic moment orientation W , if replaced by ni (the number of particles in
the i th orientation), rapidly achieves a state of quasi-equilibrium [15], thus the Fokker–Planck
equation (9) reduces to the master equation

ṅ1 = −ṅ2 = ν2,1n2 − ν1,2n1, (17)

where νi, j is the transition probability from orientation i to orientation j , and n1 and n2 are
the number of particles with a positive orientation and negative orientation, respectively. The
transition probabilities are given by

ν1,2 = τ−1
1 = b

√
C (1)

1 C (1)
2 e−β(V0−V1)

−(C (0)
1 + C (0)

2 )+
√
(C (0)

2 − C (0)
1 )2 − 4C(0)

1 C0
2

a2

4π
√

−C (0)
1 C (0)

2

(18)
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Figure 4. Simulated M versus H curve for two particle sizes: (a) 7 nm and (b)18.5 nm, respectively.

and

ν2,1 = τ−1
2 = b

√
C (2)

1 C (2)
2 e−β(V0−V1)

−(C (0)
1 + C (0)

2 )+
√
(C (0)

2 − C (0)
1 )2 − 4C(0)

1 C0
2

a2

4π
√

−C (0)
1 C (0)

2

. (19)

The solution of equation (17) is

n2(t) = nτ2 − e−
(

1
τ1

+ 1
τ2

)
t
(nτ2 − n2(τ2 + τ1))

τ1 + τ2
. (20)

We know that n1 −n2 is proportional to the net magnetization along the direction of the applied
magnetic field. For a single-domain particle with a large relaxation time, if one changes the
magnetic field after a finite interval of time (t), then

lim
δH→0−

nH−δH
2 (t) = nH →

2 (0) 
= lim
δH→0+

nH+δH
2 (t) = nH ←

2 (0). (21)

This implies that, for a particular value of H , one should not expect to get the same value
of magnetization during increasing and decreasing cycles of H . Since the relaxation time τi

increases with particle volume, (M H← − M H→) also increases with particle volume, giving
rise to higher coercivity. Hence coercivity is a consequence of the quasi-static non-equilibrium
measurement. Therefore, the Langevin theory of paramagnetism is not applicable in these
cases. We use equation (20) to generate the M versus H curve, as shown in figure 4, for particle
sizes 7 and 18.5 nm, t = 120 s and K = 106 erg cm−3, which is realistic for measurements of
coercivity using a vibrating sample magnetometer.

In the superparamagnetic limit the energy barrier separating the two energetically
degenerate magnetic orientations is very small. Thus the thermal fluctuations frequently lead
to spontaneous switching of the orientation. In figure 5 we have compared our numerically
simulated data obtained from the two-state model with the experimental data obtained from
Meiklejohn [31] and Luborsky [32]. The agreement of the numerical data with the experimental
data is excellent. At very low temperature, thermal effects are negligible and a different size
dependence of the coercivity force is observed. The size dependence of the coercivity at 10 K

6
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Figure 5. Dependence of coercive force on particle diameter for Co80Ni20 nanoparticles at room
temperature (300 K) for the single-domain regime. The red filled dot denotes the experimental
data [10] and the blue filled square denotes the simulation data obtained from our model.
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Figure 6. Dependence of coercive force on particle diameter for Co80Ni20 nanoparticles at 10 K.
The red filled dot denotes the experimental data [10] and the blue filled square denotes the simulation
data obtained from our model.

decreases monotonically with increasing size over the whole range of sizes. This is shown in
figure 6. At 10 K the thermal energy is small in comparison to the anisotropy energy barrier,
given by Keffv, where v is the particle volume and the effective anisotropy constant takes the
following phenomenological expression: Keff = Kv + 6

d Ks, where Kv and Ks are the volume
and surface anisotropy energy constants, respectively. Thus the particles behave as if they are
more anisotropic. Thus the surface region is magnetically harder than the core region due to
the anisotropy induced by the surface layer. This anisotropy, which increases with the decrease
in particle size, has a crystal-field nature and comes from symmetry breaking at the boundaries
of the particles.

The particle size dependence of Ms is shown in figure 7. The saturation magnetization,
Ms, decreases from 130 to 55 emu g−1 at 300 K as the particle size decreases. The decrease in
coercivity follows an inverse linear relationship with the particle size. This linear relationship
is also observed at low temperature (10 K). Thus we can conclude that this reduction in Ms is
totally related to the surface-to-volume ratio. As the ratio increases, the surface contribution
increases and ultimately results in a high saturation magnetization.
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Figure 7. Dependence of saturation magnetization (Ms) on particle diameter for Co80Ni20
nanoparticles at (a) 10 K and (b) 300 K. The red filled dot denotes the experimental data [10]
and the blue filled square denotes the simulation data obtained from our model.
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Ms

) on particle diameter
for Co80Ni20 nanoparticles at 10 and 300 K. The red filled dot solid line denotes the experimental
data [10] and the blue filled square solid line denotes the simulation data obtained from our model
at 10 K. The black filled upward-triangle dashed line denotes the experimental data [10] and the
green filled downward-triangle dashed line denotes the simulation data obtained from our model at
300 K.

The variation in the remanence-to-saturation magnetization ratio, Mr
Ms

, at 10 K as a function
of particle size is shown in figure 8. This variation is somewhat similar to that of the coercivity.
At very low temperature (10 K) the smallest particles have an Mr

Ms
value close to 0.5, which is the

value of Mr
Ms

for a random distribution of non-interacting uniaxial particles. The other particles

have a much smaller value of Mr
Ms

. On the other hand, this ratio is much smaller for the smallest
particles at room temperature. This is due to the thermal agitation, which frequently leads to
spontaneous switching of the orientation. In simulating all the above-mentioned graphs, we
always use the two-state model, i.e. the high barrier and weak noise limit (equation (17)).

In all the above-mentioned simulated results we use the following parameters. The
anisotropy energy is measured in units of thermal energy (kBT ). Experimentally, K ∼
106 erg cm−3 and we use V = 4

3πr 3. Now the ratio α = K V
kB T is chosen in such a way

that K V varies between 0.5kBT and 10kBT . The relaxation dynamics is mainly governed

by τ1,2 = τ0 exp
(

K V±Msh
kBT

)
. We know that τ0 ∼ 10−10 s. Typically, we have focused in

the time window of 1011τ0, which is equivalent to the experimental measurement time of dc

8
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magnetization. We use hMs ∼ 0.2kBT for our simulation. Here we are dealing with about
1000 (n) particles.

In this section we have shown that the non-equilibrium state governs the magnetic
hysteresis of nanomagnetic systems. The variation in coercivity at room temperature as well
as at 10 K as a function of particle size has also been explained in this section. We have also
studied the effect of surface anisotropy on the magnetic properties of our nanomagnetic system.

3. Effect of anisotropic potential

In the case of a superparamagnetic system, a common practice is to fit the magnetization curve
by using the Langevin theory of paramagnetism [33]. But it is not obvious, since the Langevin
theory of paramagnetism does not include magneto-crystalline anisotropy energy. So in this
section we go to deeper insight into the statical properties of non-interacting magnetically
anisotropic nanoparticles in the framework of classical physics. We study the effect of the
magnetic anisotropy on the magnetization of superparamagnetic systems. We derive the first
few terms in the expansion of the partition function, Z , in powers of σ = Kv

kB T . This expansion
will provide a suitable description of the magnetization when the anisotopy energy is small
in comparison to the thermal energy. Now the magnetic energy corresponding to figure (9) is
given by

−βV (θ, φ, λ) = σ (sin θ sinλ cos φ + cos θ cos λ)2 + ξ cos θ. (22)

With this choice of coordinates and magnetic energy, the partition function becomes

Z = 1

2π

∫ π

0
dθ sin θ exp(ξ cos θ)

∫ 2π

0
dφ exp

[
σ(sin θ sinλ cosφ + cos θ cosλ)2

]
. (23)

3.1. Weak anisotropy

Expanding the second exponential of equation (23), we obtain

Z =
∞∑
0

σ i

i ! zi , (24)

where

zi = 1

2π

∫ π

0
dθ sin θ exp(ξ cos θ)

∫ 2π

0
dφ(cos λ cos θ + sinλ cos θ cosφ)2i . (25)

9
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Let us rewrite equation (24) in powers of σ as

Z = Z0

(
1 + Z1

Z0
σ + Z2

2Z0
σ 2 + . . .

)
. (26)

Thus

lnZ � lnZ0 + Z1

Z0
σ +

[
1

2

Z2

Z0
−

(Z1

Z0

)2
]
σ 2, (27)

where

Z0 = 2

ξ
sinh ξ (28)

Z1

Z0
=

(
1 − 2

ξ
L(ξ)

)
cos2 λ+ 1

ξ
L(ξ) sin2 λ (29)

1

2

[
Z2

Z0
−

(Z1

Z0

)2
]

= 2

ξ 2

{[
2

(
1 − 3

ξ
L

)
− L2

]
cos4 λ−

[
6

(
1 − 3

ξ
L

)
− L2 − ξL

]

× cos2 λ sin2 λ+ 1

4

[
3

(
1 − 3

ξ
L

)
− L2

]
sin4 λ

}
(30)

and

L(ξ) = coth ξ − 1

ξ
. (31)

We know the statistical–mechanical relation

MB = m
∂

∂ξ
(lnZ). (32)

Thus

MB

m
� L(ξ)+ d

dξ

(Z1

Z0

)
σ + 1

2

d

dξ

[
Z2

Z0
−

(Z1

Z0

)2
]
σ 2. (33)

Now, taking derivatives of equations (29) and (30) with respect to ξ , we obtain the
magnetization for some relevant particular cases. First, we take the case when the external
applied field direction is parallel to the anisotropy axis:

MB,‖
m

� L(ξ)+ 2

ξ

[
L2 −

(
1 − 3

ξ

)
L

]
σ + 4

ξ 3

[
3L2 − 5

(
1 − 3

ξ
L

)

+ ξL

[
L2 −

(
1 − 3

ξ
L

)]]
σ 2. (34)

For the perpendicular case,

MB,⊥
m

� L(ξ)− 1

ξ

[
L2 −

(
1 − 3

ξ
L

)]
σ + 3

2ξ 3

[
3L2 − 5

(
1 − 3

ξ
L

)

+ ξL

[
L2 −

(
1 − 3

ξ
L

)]]
σ 2. (35)

When anisotropy axes are distributed at random then

〈MB〉ran

m
� L(ξ)− 4

15

(
1 − 3

ξ
L

)
1

ξ

[
L2 −

(
1 − 3

ξ
L

)]
σ 2. (36)

From figure 10(a) it is evident that, for the longitudinal field case, anisotropy favours the
alignment of the magnetic moment along the field direction, whereas in the transverse field

10
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kB T , for different cases with

easy-plane anisotropy. (b) Variation in anisotropy-induced contribution with longitudinal field for
the same.

case the anisotropy hinders the magnetic moment aligning in the field direction. The anisotropy
contribution (MB(ξ) − mL(ξ)) is shown in figure 10(b). From this figure it is evident that
the random orientation of the anisotropy axes significantly reduces the anisotropy-induced
contribution to the magnetization process. In the low-field regime, this cancellation is exact.
For the easy-plane anisotropy case (σ < 0), the longitudinal and transverse fields interchange
their roles. In this case, when �B ‖ n̂, the anisotropy hinders the magnetization process,
whereas when �B ⊥ n, anisotropy favours it, and for the anisotropy axes distributed at random,
the randomness again reduces the anisotropy-induced contribution, as shown in figure 11(a).
In figure 11(b) we have shown the anisotropy-induced contribution for the easy-plane case
(σ < 0).

3.2. Strong anisotropy

In order to complement the weak-anisotropy expansion, we now discuss the asymptotic
expansion of the partition function for strong anisotropy. The desired expansion is given by

Z � eσ

σ
cosh ξ‖

{
1 + 1

4σ
[(2 + ξ 2

⊥)− 2ξ‖ tanh ξ‖] + 1

4σ 2

[(
3 + ξ 2

‖ + ξ 2
⊥ + 1

8
ξ 4
⊥

)

− (3 + ξ 2
⊥)ξ‖ tanh ξ‖

]
+ . . .

}
. (37)
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Figure 12. Variation in magnetization with longitudinal field ξ = m B
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weak-anisotropy case; (b) strong-anisotropy case.

We finally obtain

lnZ � ln

(
eσ

σ
cosh ξ‖

)
+ 1

4σ
[(2 + ξ 2

⊥)− 2ξ‖ tanh ξ‖]

+ 1

8σ 2
[5 + (2ξ 2

‖ + ξ 2
⊥)− (4 + ξ 2

⊥)ξ‖ tanh ξ‖ − ξ 2
‖ tanh2 ξ‖]. (38)

For the longitudinal field case we obtain

MB,‖
m

� tanh ξ

{
1 − 1

2σ

[
1 + 2ξ

sinh(2ξ)

]
− 1

8σ 2

[
4 − ξ

sinh(2ξ)− 2ξ

cosh2 ξ

]}
(39)

and for the perpendicular case we obtain

MB,⊥
m

� ξ

(
1

2σ
+ 1

4σ 2

)
. (40)

For the sake of completeness, we plot in figure (12) the magnetization versus longitudinal field
for both the weak-anisotropy and strong-anisotropy cases for different values of dimensionless
anisotropy parameter (σ ).

We conclude this section by stating the fact that the anisotropic potential does effect the
magnetization process of a single-domain particle, but one can use the Langevin theory of
superparamagnetism for the weak-anisotropy case with anisotropy axes distributed at random.

4. Multi-domain regime

We now explain the decrease in the coercive field with an increase in particle size. It is
clear from the above discussion that this cannot happen if the particles still comprise single
domains. Obviously, a single- to multi-domain transformation takes place at the maximum of
coercivity. The critical diameter for which the single-domain structure becomes multi-domain
can be estimated from the balance between the energies to form a single wall and the alternative

magneto-static energy, which is given by dc = 9(AK )
1
2

(2πM2
s )

, where A and K are the exchange and
anisotropy constants, respectively. The critical diameter above which the particle becomes
multi-domain for Co80Ni20, Ni, Fe and Co are 30, 42, 10 and 20 nm, respectively.

For the sake of simplicity, we consider only the axial symmetry case for the multi-domain
regime. Then both the Gibbs free energy per unit volume (V ) and the distribution of the
magnetization orientation (W ) are axially symmetric, i.e. V and W are independent of φ.
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L

t
b

a

Figure 13. Spin distribution near 180◦ domain wall (a) in real space and (b) in probability space.

We consider an arrangement of spin in a linear chain, as shown in figure 13. In the
following discussion, one should keep in mind that we are not interested here in the origin
of the domain wall, but we assume the existence of the domain and the Hamiltonian contains
the relevant terms. The Gilbert equation corresponding to i th spin is

�̇m(i) = b

a
Ms �m(i) × �H (i)

eff + bMs( �m(i) × �H (i)
eff )× �m(i). (41)

For a particular site the spin can move over the surface of the sphere along a semicircular
curve (θε[0, π]). Writing everything in terms of spherical polar coordinates and proceeding as
above (section 2), we have

∂W (i)(θ, t)

∂ t
= b

sin θ

∂

∂θ

[
sin θ

(
∂V

∂θ
W (i) + β−1 ∂W (i)

∂θ

)]
. (42)

Here we use the condition dJ i(θ,t)
dφ = 0, which physically means that there is no spin hopping

between two sites. This implies that the spin will start relaxing along the surface of the
sphere without changing its position along the Z -axis. We use the transformation W (θ, t) =√

Weq(θ)ψ(θ, t) with Weq(θ) = A0e
−U (θ)
ε and ε = kBT in equation (42) and we obtain

dψ

dt
= k1ψ

′′ + h1

(
U ′′(θ)

2
− U ′2

4ε

)
ψ, (43)

where h1 = b
kB T . Introducing a new function φ(θ) such that ψ(θ, t) = φ(θ)e−λ′t , we obtain,

from equation (43),

λφ = εφ′′ +
(

U ′′(θ)
2

− U ′2

4ε

)
φ, (44)

with λ = λ′
h1

. Now we shall define two operators A = ∂
∂θ

+ U ′
2ε and A† = − ∂

∂θ
+ U ′

2ε , such that
one can easily rewrite equation (44):

εA† Aφ = λφ. (45)

Without loss of generality, we can choose the ground-state eigenvalue of A† A to be equal to
zero (since Aφ0 = 0 to get the equilibrium distribution). Once we satisfy A† A = 0, the next
step in SUSY QM is to define the operator AA†. Now it is a well-known fact in SUSY QM that,
if φ1 is the first excited eigenstate of A† A, then it is the ground state of AA† with a ground-state
eigenvalue λ1 [34]. Now one can apply the variational method to get λ1:

λ1 =
∫
φ1(θ)εAA†φ1(θ) dθ∫
φ1(θ)φ1(θ) dθ

. (46)
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Now we are in a position to get the solution (λ1) of the Fokker Planck equation by using the
trial wavefunction for the variational method as e

f (θ)
2ε . We shall use the following form of f (θ)

in different regions:

f (θ) = U(c)− U(c − θ), −∞ � θ � c

f (θ) = U(θ), c � θ � d

f (θ) = U(d)− U(θ − d), d � θ � ∞
with the condition that f (θ) must match at θ = c and θ = d from either side. The potential
energy of the spins making an angle less than 90◦ can be approximated by a harmonic-
oscillator-like potential V (θ) = 1

2 K θ2. Once we get the form of f (θ), we can perform
the variational method on equation (46). The result obtained for λ1 will be in terms of the
variational parameters c and d . Then we shall set the condition

dλ1

dc
= dλ1

dd
= 0, (47)

and obtain the desired relaxation time

λ1 ∼ h1

(
e

−(U0−U (θ1 ))
ε + e

−(U0−U (θ2 ))
ε

)
, (48)

where U0 is the barrier height and θ1 and θ2 are the positions of the two minima. Now it is
clear that the relaxation time depends on the damping parameter as well as the barrier height,
which in turn depends on the value of the anisotropy constant and the angle between successive
spins. The anisotropy constant is higher (by one order of magnitude) for smaller particles. So
for a smaller particle it takes more time to relax back to its initial configuration, giving rise to a
higher coercive field. The above model indicates that our system under consideration consists
of a linear chain of ferromagnetic particles having two domains, with their easy axes parallel
to each other and with applied magnetic fields too. The above model also does not contain
the domain of closure. Still, the model can be regarded as the starting point to explaining
qualitatively the hysteresis of a multi-domain system.

The above-mentioned model can be verified by comparing the theoretical results obtained
from the Monte Carlo (MC) simulation of our model with those of the experimental results
of Gangopadhyay et al [11] and Luna et al [10]. The study of the relaxation dynamics of
a real multi-domain system is beyond the scope of this paper. But one can think of the
following scheme. We can simulate the relaxation kinetics by the infinitesimal spin-rotation
dynamics [35]. This dynamics can be realized by the Metropolis algorithm. The acceptance
probability in the Metropolis algorithm for the proposed rotation of the spin at site j from Sj

to R(Sj ) is defined as W [Sj → R(Sj )] = min[1, exp(−βδE j)], where δE j is the energy
change due to the spin rotation. Here the relaxation of the dimensionless system magnetization
can be studied by starting from an initial state magnetized opposite to the applied field. One
can randomly choose one spin (say j th) out of the whole spin chain. Then the orientation
of the j th spin is kept fixed and the other spins are allowed to relax. Now considering the
configurations of all other spins, we can calculate the energy of the j th spin. Then one can
change the orientation of the same spin by an infinitesimally small angle δθ and perform the
same calculation. In this way, one can easily evaluate the energy profile of the j th spin as a
function of θ . Now, using our model, one can easily calculate the relaxation time depending on
the special position of the spin and one can verify the model.

5. Summary and conclusions

The particle size dependence of different magnetic properties of nanomagnetic particles are
explained from the viewpoint of non-equilibrium statistical mechanics. At room temperature,
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a maximum in the coercive force field is observed. Thus, below a certain critical diameter dc,
the coercive force decreases with a decrease in particle size, and above dc the coercive force
increases with a decrease in particle size. This indicates that two different mechanisms are
responsible for this contrasting behaviour in the magnetization reversal process. Below dc,
the decrease in Hc with decreasing particle size is due to thermal effects observed in particles
which behave as single-domain particles. In this regime the magnetization reversal occurs by
coherent spin rotation. The largest particles behave as magnetic multi-domain particles and
the magnetization reversal occurs through wall motion. Assuming the single- to multi-domain
transformation, we have shown that the relaxation time of the sample decreases with an increase
in particle size due to a decrease in surface pressure and anisotropy constant, which gives a
decrease in coercivity. Here, in the multi-domain regime, we apply the SUSY QM approach,
which has apparently never been applied to a problem in magnetism. However, our results from
the SUSY QM approach matches that of Coffey et al [17]. Not only that, we extend this study
to explain the decrease in the coercivity of nanoparticles. The important point to note is that, in
the case of any experimental study of a single-domain particle at room temperature, one should
form this coercive field (Hc) versus particle size curve to figure out the peak in the curve and
make all the measurements below this dc to analyse the behaviour of single-domain magnetic
nanoparticles. At room temperature, the saturation magnetization Ms decreases via an inverse
linear relationship with the decrease in particle size. The variation in the ratio Mr

Ms
as a function

of particle size is somewhat similar to that of the coercivity at 300 K.
On the other hand, the magnetic properties of nanoparticles at low temperature (10 K)

are quite different from those of the room-temperature properties. At 10 K the coercive force
decreases monotonically with increasing size over the whole range of sizes. The ratio Mr

Ms
also

decreases monotonically over the whole range of particle sizes at 10 K. The contributions of
thermal and surface effects are different at different temperatures. As a result, we observe
differences in magnetic behaviour at different temperatures, in particular in the saturation
magnetization, the coercivity and the remanence-to-saturation magnetization ratio. The surface
effect dominates at low temperature, whereas the thermal effect dominates at high temperature.

We have also demonstrated the effect of the anisotropic potential on the equilibrium
magnetization of such a collection of non-interacting single-domain magnetic nanoparticles.
It is seen that a random distribution of the anisotropy axis reduces the anisotropy-induced
contribution considerably and that we can use the Langevin theory of superparamagnetism
for the weak-anisotropy and random-axis case.

Our results can be useful in the interpretation of magnetic data and the magnetization
reversal process observed in nanocrystalline particles, where the interparticle interaction can
be neglected. This study is also helpful in studying the magnetic relaxation of nanoparticles,
which is very important in understanding magnetic recording technologies.

Acknowledgments

We are grateful to professor Sushanta Dattagupta, professor Binayak Dutta Ray and H S Mani
for helpful discussions. SC is grateful to Professor D D Sarma for his kind support and
discussions. SC also acknowledges the Department of Science and Technology (DST), India
(project no. DSTO627) for financial help. MB acknowledges financial support from the Council
of Scientific and Industrial Research (CSIR), India.

References

[1] Neel L 1949 Ann. Geophys. (C. N. R. S) 5 99
[2] Dormann J L, Bessais L and Fiorani D 1988 J. Phys. C: Solid State Phys. 21 2015

15

http://dx.doi.org/10.1088/0022-3719/21/10/019


J. Phys.: Condens. Matter 19 (2007) 216201 S Chakraverty and M Bandyopadhyay

[3] Puntes V F, Krishnan K M and Alivisatos A P 2001 Science 291 2115
[4] Frankel J and Dorfman J 1930 Nature 126 274

Kittel C 1946 Phys. Rev. 70 965
[5] Sun Y, Salamon M B, Garnier K and Averback R S 2003 Phys. Rev. Lett. 91 167206
[6] Bean C P and Livingstone J D 1959 J. Appl. Phys. 30 120S

Jacobs I S and Bean C P 1963 Magnetism vol III, ed G T Rado and H Suhl (New York: Academic)
[7] Garcia-Palacios J L and Lazaro F J 1997 Phys. Rev. B 55 1006
[8] Kumar D and Dattagupta S 1983 J. Phys. C: Solid State Phys. C 16 3779

Dattagupta S 1987 Relaxation Phenomena in Condensed Matter Physics (Orlando, FL: Academic)
[9] Raikher Yu L and Stepanov V I 1995 Phys. Rev. B 52 3493

[10] Luna C, Morales M del P, Serna C J and Vazquez M 2003 Nanotechnology 14 268
[11] Gangopadhyay S, Hadjipanayis G C, Dale B, Sorensen C M, Klabunde K J, Papaefthymiou V and

Kostikas A 1992 Phys. Rev. B 45 9778
[12] Morrish A H 1965 Physical Principles of Magnetism (New York: Wiley)
[13] Frei E H, Shtrikman S and Treves D 1959 Phys. Rev. 106 446
[14] Childress J R, Chen C L and Natham M 1996 Appl. Phys. Lett. 56 95
[15] Brown W F 1963 Phys. Rev. 130 1677
[16] Aharoni A 1969 Phys. Rev. 177 793
[17] Coffey W T, Crothers D S F, Dormann J L, Geoghegan L J and Kennedy E C 1998 Phys. Rev. B 58 3249

Coffey W T, Crothers D S F, Dormann J L, Geoghegan L J and Kennedy E C 1998 J. Phys.: Condens. Matter
10 9093

[18] Klik I and Gunther L 1990 J. Stat. Phys. 60 473
[19] Garanin D A, Kennedy E C, Crothers D S F and Coffey W T 1999 Phys. Rev. E 60 6499
[20] Coffey W T, Crothers D S F, Kalmykov Yu P and Waldron J T 1995 Phys. Rev. B 51 15947
[21] Coffey W T, Crothers D S F, Dormann J L, Geoghegan L J, Kalmykov Yu P, Waldron J T and

Wickstead A W 1995 Phys. Rev. B 52 15951
[22] Braun H B 1993 Phys. Rev. Lett. 71 3557
[23] Braun H B 1994 Phys. Rev. B 50 16485
[24] Hinzke D and Nowak U 2000 Phys. Rev. B 61 6734
[25] Sasaki M, Jönsson P E, Takayama H and Mamiya H 2005 Phys. Rev. B 71 104405
[26] Chakraverty S, Bandyopadhyay M, Chatterjee S, Dattagupta S, Frydman A, Sengupta S and Sreeram P A 2005

Phys. Rev. B 71 054401
[27] Landau L and Lifshitz E 1935 Phys. Z. Sowjetunion 8 153
[28] Gilbert T L 1955 Phys. Rev. 100 1243
[29] Wang M C and Uhlenbeck G E 1945 Rev. Mod. Phys. 17 323
[30] Coffey W T, Crothers D S F, Dormann J L, Geoghegan L J, Kennedy E C and Wernsdorfer W 1998 J. Phys.:

Condens. Matter 10 9093
[31] Meiklejohn W H 1953 Rev. Mod. Phys. 25 302
[32] Luborsky F E 1961 J. Appl. Phys. 32 171S
[33] Kodama R H 1999 J. Magn. Magn. Mater. 200 359
[34] Cooper F, Khare A and Sukh U 2001 Supersymmetry in Quantum Mechanics (Singapore: World Scientific)
[35] Frenkel D and Smit B 1996 Understanding Molecular Simulations (San Diego, CA: Academic)

16

http://dx.doi.org/10.1126/science.1057553
http://dx.doi.org/10.1103/PhysRev.70.965
http://dx.doi.org/10.1103/PhysRevLett.91.167206
http://dx.doi.org/10.1063/1.1735100
http://dx.doi.org/10.1103/PhysRevB.55.1006
http://dx.doi.org/10.1088/0022-3719/16/19/018
http://dx.doi.org/10.1103/PhysRevB.52.3493
http://dx.doi.org/10.1088/0957-4484/14/2/332
http://dx.doi.org/10.1103/PhysRevB.45.9778
http://dx.doi.org/10.1103/PhysRev.106.446
http://dx.doi.org/10.1063/1.102615
http://dx.doi.org/10.1103/PhysRev.130.1677
http://dx.doi.org/10.1103/PhysRev.177.793
http://dx.doi.org/10.1103/PhysRevB.58.3249
http://dx.doi.org/10.1088/0953-8984/10/40/013
http://dx.doi.org/10.1007/BF01314931
http://dx.doi.org/10.1103/PhysRevE.60.6499
http://dx.doi.org/10.1103/PhysRevB.51.15947
http://dx.doi.org/10.1103/PhysRevB.52.15951
http://dx.doi.org/10.1103/PhysRevLett.71.3557
http://dx.doi.org/10.1103/PhysRevB.50.16485
http://dx.doi.org/10.1103/PhysRevB.61.6734
http://dx.doi.org/10.1103/PhysRevB.71.104405
http://dx.doi.org/10.1103/PhysRevB.71.054401
http://dx.doi.org/10.1103/RevModPhys.17.323
http://dx.doi.org/10.1088/0953-8984/10/40/013
http://dx.doi.org/10.1103/RevModPhys.25.302
http://dx.doi.org/10.1016/S0304-8853(99)00347-9


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 219803 (1pp) doi:10.1088/0953-8984/20/21/219803

Erratum
Coercivity of magnetic nanoparticles: a stochastic
model
S Chakraverty and M Bandyopadhyay
2007 J. Phys.: Condens. Matter 19 216201

In the article ‘Coercivity of magnetic nanoparticles: a stochas-
tic model’, we explain the mysterious behaviour of coercivity
of the nanomagnetical particles with the variation of particle
size at two different temperatures (300 K and 10 K).
In that context the effect of the magneto-crystalline anisotropic
potential on the magnetization of non-interacting uniaxial
nanoparticles is discussed in section 3. However, this is dis-
cussed earlier by J L Garcı́a-Palacios in his classic article ‘On
the statics and dynamics of magneto-anisotropic nanoparticles’
[1]. If someone is interested in this topic they should consult
the article of J L Garcı́a-Palacios [1].
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